Harmonic maps on domains with piecewise Lipschitz continuous metrics

نویسندگان

  • Haigang Li
  • Changyou Wang
چکیده

For a bounded domain Ω equipped with a piecewise Lipschitz continuous Riemannian metric g, we consider harmonic map from (Ω, g) to a compact Riemannian manifold (N, h) ↪→ Rk without boundary. We generalize the notion of stationary harmonic maps and prove their partial regularity. We also discuss the global Lipschitz and piecewise C1,α-regularity of harmonic maps from (Ω, g) to manifolds that support convex distance functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Uniform continuity

The purpose of this paper is to explore conditions which guarantee Lipschitz-continuity of harmonic maps w.r.t. quasihyperbolic metrics. For instance, we prove that harmonic quasiconformal maps are Lipschitz w.r.t. quasihyperbolic metrics. 2000 Mathematics Subject Classification. Primary 30C85. Secondary 30C65.

متن کامل

Composition operators and natural metrics in meromorphic function classes $Q_p$

‎In this paper‎, ‎we investigate some results on natural metrics on the $mu$-normal functions and meromorphic $Q_p$-classes‎. ‎Also‎, ‎these classes are shown to be complete metric spaces with respect to the corresponding metrics‎. ‎Moreover‎, ‎compact composition operators $C_phi$ and Lipschitz continuous operators acting from $mu$-normal functions to the meromorphic $Q_p$-classes are characte...

متن کامل

Geometric Flows with Rough Initial Data

We show the existence of a global unique and analytic solution for the mean curvature flow and the Willmore flow of entire graphs for Lipschitz initial data with small Lipschitz norm. We also show the existence of a global unique and analytic solution to the Ricci-DeTurck flow on euclidean space for bounded initial metrics which are close to the euclidean metric in L∞ and to the harmonic map fl...

متن کامل

A Computational Model for Multi-variable Differential Calculus

We develop a domain-theoretic computational model for multi-variable differential calculus, which for the first time gives rise to data types for piecewise differentiable or more generally Lipschitz functions, by constructing an effectively given continuous Scott domain for real-valued Lipschitz functions on finite dimensional Euclidean spaces. The model for real-valued Lipschitz functions of n...

متن کامل

Limit theorems for coupled interval maps

We prove a local limit theorem for Lipschitz continuous observables on a weakly coupled lattice of piecewise expanding interval maps. The core of the paper is a proof that the spectral radii of the Fourier-transfer operators for such a system are strictly less than 1. This extends the approach of [KL06] where the ordinary transfer operator was studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011